Flag enumerations of matroid base polytopes
نویسنده
چکیده
In this paper, we study flag structures of matroid base polytopes. We describe faces of matroid base polytopes in terms of matroid data, and give conditions for hyperplane splits of matroid base polytopes. Also, we show how the cd-index of a polytope can be expressed when a polytope is split by a hyperplane, and apply these to the cd-index of a matroid base polytope of a rank 2 matroid.
منابع مشابه
Valuations for matroid polytope subdivisions
We prove that the ranks of the subsets and the activities of the bases of a matroid define valuations for the subdivisions of a matroid polytope into smaller matroid polytopes.
متن کاملLattice Path Matroid Polytopes
Fix two lattice paths P and Q from (0, 0) to (m, r) that use East and North steps with P never going above Q. Bonin et al. in [1] show that the lattice paths that go from (0, 0) to (m, r) and remain bounded by P and Q can be identified with the bases of a particular type of transversal matroid, which we call it a lattice path matroid. In this paper, we consider properties of lattice path matroi...
متن کاملThe Lattice of Flats and its Underlying Flag Matroid Polytope
Let M be a matroid and F the collection of all linear orderings of bases ofM. orflags of M. We define the flag matroid polytope A(F)We determine when two vertices of A(F) are adjacent, and provide a bijection between maximal chains in the lattice of flats of M and certain maximal faces of A(F).
متن کاملA quasisymmetric function for matroids
A new isomorphism invariant of matroids is introduced, in the form of a quasisymmetric function. This invariant • defines a Hopf morphism from the Hopf algebra of matroids to the quasisymmetric functions, which is surjective if one uses rational coefficients, • is a multivariate generating function for integer weight vectors that give minimum total weight to a unique base of the matroid, • is e...
متن کاملExtended Formulations for Polytopes of Regular Matroids
We present a simple proof of the fact that the base (and independence) polytope of a rank n regular matroid over m elements has an extension complexity O(mn).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 117 شماره
صفحات -
تاریخ انتشار 2010